Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Vyacheslav N. Baumer, ${ }^{\text {a* }}$ Sergiy M. Kovalenko, ${ }^{\text {b }}$ Kostyantyn M. Sytnyk ${ }^{\text {b }}$ and Valentyn P. Chernykh ${ }^{\text {c }}$

${ }^{\text {a }}$ Institute for Single Crystals, National Academy of Sciences of Ukraine, 60 Lenin ave., Kharkiv 61001, Ukraine, ${ }^{\text {b }}$ Department of Organic Chemistry, Ukrainian National University of Pharmacy, 4 Blyukher str., Kharkiv 61002, Ukraine, and ${ }^{\mathrm{c}}$ Ukrainian National University of Pharmacy, 4 Blyukher str., Kharkiv 61002, Ukraine

Correspondence e-mail:
baumer@xray.isc.kharkov.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.045$
$w R$ factor $=0.099$
Data-to-parameter ratio $=14.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

6-Hexyl-7-hydroxy-3-(3-phenyl-1H-1,2,4-triazol-5-yl)-2H-chromen-2-one monohydrate

On heating N^{\prime}-benzoyl-7-hydroxy-6-hexyl-2-oxo- $2 H$-chro-mene-3-carbohydrazonamide in dimethylformamide, the process of cyclization leads to the formation of a triazole derivative of a 3-substituted chromenone, $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$, as confirmed by this crystal structure investigation. The three ring systems are almost coplanar and, in the crystal structure, a three-dimensional network of hydrogen bonds is formed; these are of the types $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}, \mathrm{N}-\mathrm{H} \cdots \mathrm{N}, \mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$.

Comment

In a continuation of our previous investigations on new approaches to the synthesis of 3 -substituted chromenone derivatives (Kovalenko et al., 1996), the title compound, (I), was synthesized by heating N^{\prime}-benzoyl-7-hydroxy-6-hexyl-2-oxo- 2 H -chromene-3-carbohydrazonamide in dimethylformamide (DMF). Since a path of cyclization was not known a priori, an X-ray crystallographic investigation was carried out to determine the molecular structure of the product. The results of the present study show that, under the above reaction conditions, a substituted 3-(1,2,4-triazol-5-yl)-2H-chromen-2-one is formed.

The three ring systems are almost coplanar. The chromenone moiety ($\mathrm{O} 1, \mathrm{C} 2-\mathrm{C} 10$) is planar to within $0.025 \AA$, the maximum deviations being 0.035 (1) and -0.038 (1) \AA for atoms O 1 and C 8 , respectively. Atoms O 2 and O 3 are displaced from this plane by 0.073 (2) and $-0.103(2) \AA$, respectively. The triazole ring is planar to within $0.004 \AA$, and is rotated by $3.06(9)^{\circ}$ with respect to the chromenone plane. The phenyl ring makes a dihedral angle of $12.93(11)^{\circ}$ with the triazole ring. These dihedral angles, together with the torsion angles $\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 11-\mathrm{N} 1, \mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 11-\mathrm{N} 2, \mathrm{~N} 1-\mathrm{C} 12-$ $\mathrm{C} 13-\mathrm{C} 18$ and $\mathrm{N} 3-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$ (Table 1) show that the three rings are slightly rotated with respect to each other. This arrangement may be influenced by the intramolecular $\mathrm{N} 2-$ $\mathrm{H} 2 \cdots \mathrm{O} 2$ hydrogen bond (Table 2) and short intramolecular contacts $\mathrm{N} 1 \cdots \mathrm{H} 4(2.63 \AA)$, N1 $\cdots \mathrm{H} 18(2.64 \AA)$ and N2 $\cdots \mathrm{H} 14$ ($2.59 \AA$); the van der Waals radii for N and H atoms are 1.55 and $1.20 \AA$, respectively (Bondi, 1964).

Received 19 July 2004 Accepted 22 July 2004 Online 31 July 2004

Figure 1
A view of (I), showing displacement ellipsoids drawn at the 50% probability level and the atom-numbering scheme. Hydrogen bonds are indicated by dashed lines.

The first atom of the hexyl chain, C19, deviates from the chromenone plane by 0.060 (2) \AA; the hexyl C atoms are coplanar to within $0.024 \AA$, and this plane makes a dihedral angle of $20.3(2)^{\circ}$ with the chromenone plane.

The three-dimensional system of hydrogen bonds observed in the crystal structure involves both inter- and intramolecular hydrogen bonds (Table 2).

Experimental

6-Hexyl-7-hydroxy-3-(3-phenyl-1 H -1,2,4-triazol-5-yl)-2H-chromen-2-one was prepared by a known literature procedure (Kovalenko et al., 1996). A solution of N^{\prime}-benzoyl-6-hexyl-7-hydroxy-2-oxo-2H-chromene-3-carbohydrazonamide (1 mmol) in DMF $(10 \mathrm{ml})$ was refluxed for 30 min . On completion of the reaction, the mixture was cooled and the resulting precipitate was filtered off, washed with water, cold propan-2-ol $(2 \times 5 \mathrm{ml})$ and recrystallized from ethanolwater (1:1) to give 6-hexyl-7-hydroxy-3-(3-phenyl-1H-1,2,4-triazol-5-yl)-2H-chromen-2-one (yield 68%). Crystals of the title compound were grown by evaporation of an ethanol-water solution of the product.

Crystal data

$\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=407.46$
Triclinic, $P \overline{1}$
$a=9.465(2) \AA$
$b=10.316(2) \AA$
$c=12.518(3) \AA$
$\alpha=79.521(17)^{\circ}$
$\beta=88.450(17)^{\circ}$
$\gamma=64.259(17)^{\circ}$
$V=1080.7(4) \AA^{3}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.252 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 24 \\
& \quad \text { reflections } \\
& \theta=11.0-12.0^{\circ} \\
& \mu=0.09 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Block, light yellow } \\
& 0.45 \times 0.20 \times 0.15 \mathrm{~mm} \\
& \\
& \theta_{\text {max }}=25.5^{\circ} \\
& h=-10 \rightarrow 11 \\
& k=-10 \rightarrow 12 \\
& l=0 \rightarrow 14 \\
& 2 \text { standard reflections } \\
& \quad \text { every } 98 \text { reflections } \\
& \text { intensity decay: } 1 \%
\end{aligned}
$$

Data collection

Siemens P3/PC diffractometer $2 \theta / \theta$ scans
Absorption correction: none 4168 measured reflections 3991 independent reflections 2430 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.073$

Refinement

Refinement on F^{2}	H-atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$	$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0345 P)^{2}\right]$
$w R\left(F^{2}\right)=0.099$	where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$S=1.01$	$(\Delta / \sigma)_{\max }<0.001$
3991 reflections	$\Delta \rho_{\max }=0.13 \mathrm{e} \AA^{-3}$
272 parameters	$\Delta \rho_{\min }=-0.13 \mathrm{e}^{-3}$

Table 1
Selected torsion angles $\left({ }^{\circ}\right)$.

$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 11-\mathrm{N} 2$	$-176.68(14)$	$\mathrm{N} 3-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 18$	$165.86(14)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 11-\mathrm{N} 2$	$4.1(2)$	$\mathrm{N} 1-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 18$	$-11.3(2)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 11-\mathrm{N} 1$	$2.1(2)$	$\mathrm{N} 3-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$-12.4(2)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 11-\mathrm{N} 1$	$-177.19(13)$	$\mathrm{N} 1-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$170.45(14)$

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O} 4$	0.92	1.81	$2.701(2)$	162
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{O} 2$	0.86	2.23	$2.779(2)$	121
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{~N} 3^{\mathrm{i}}$	0.86	2.35	$2.960(2)$	129
$\mathrm{O} 4-\mathrm{H} 4 A \cdots \mathrm{~N} 1^{\mathrm{ii}}$	0.89	2.10	$2.981(2)$	168
$\mathrm{O}^{\mathrm{H}}-\mathrm{H} 4 B \cdots \mathrm{O}^{\mathrm{iii}}$	0.89	2.34	$3.206(2)$	167
$\mathrm{C} 14-\mathrm{H} 14 \cdots \mathrm{O}^{\mathrm{i}}$	0.93	2.46	$3.304(2)$	151
Symmetry codes: (i) $-1-x, 1-y, 1-z ;$ (ii) $x, 1+y, z ;$ (iii) $-x, 2-y, 1-z$				

All H atoms were located in a difference map and treated as riding, with $\mathrm{N}-\mathrm{H}=0.86 \AA, \mathrm{O}-\mathrm{H}$ in the range $0.89-0.92 \AA$ and $\mathrm{C}-\mathrm{H}$ in the range $0.93-0.97 \AA . U_{\text {iso }}(\mathrm{H})$ values were set equal to $1.2 U_{\text {eq }}$ of the carrier atom.

Data collection: P3 (Siemens,1989); cell refinement: P3; data reduction: XDISK (Siemens, 1991) and XPREP (Siemens, 1991); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: $X P$ (Siemens, 1991); software used to prepare material for publication: WinGX (Farrugia, 1999).

This work was supported in part by the Ministry of Education of Ukraine. VB acknowledges the ICDD for financial support (grant \#03-02).

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Bondi, A. (1964). J. Phys. Chem. 68, 441-446.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Kovalenko, S. N., Zubkov, V. A., Chernykh, V. P., Turov, A. V. \& Ivkov, S. M. (1996). Khim. Get. Soedin. SSSR, pp. 186-192. (In Russian.)

Sheldrick, G. M. (1997). SHELXL97. Release 97-2. University of Göttingen, Germany,.
Siemens (1989). P3. Siemens Analytical X-ray Instruments Inc., Karlsruhe, Germany.
Siemens (1991). XDISK, XPREP and XP. Siemens Analytical X-ray Instruments Inc., Karlsruhe, Germany.

